Триггерная активность при аритмиях это

Каналопатии и триггерная активность. Автоматические суправентрикулярные тахиаритмии

Триггерная активность при аритмиях это

В последние годы некоторые разновидности тахиаритмий были отнесены к генетическим нарушениям в каналах, которые управляют ионными потоками через мембраны клеток сердца.

Такие «каналопатии» — аномально функционирующие каналы вследствие врожденных мутаций — могут поразить любую электрически активную клетку и не ограничиваются только сердцем. Так, некоторые виды мигреней, эпилепсии, периодического паралича и заболеваний мышечной ткани, по-видимому, обусловлены каналопатией.

Среди аритмий, вызванных каналопатией, наиболее распространенные и в то же время наиболее клинически значимые — те, которые связаны с триггерной активностью.

Триггерная активность вызывается аномальными потоками положительных ионов внутрь сердечной клетки. Эти ионные потоки вызывают довольно острый «выступ» на потенциале действия в конце фазы 3 или в начале фазы 4. Этот выступ называется следовой деполяризацией.

Полагают, что в большинстве случаев следовая деполяризация обусловлена врожденной патологией каналов, управляющих движением ионов кальция через клеточную мембрану.

Если следовые деполяризации достаточно большие, они способны открывать быстрые натриевые каналы (которые, как уже упоминалось, являются потенциалзависимыми), генерируя таким образом следующий потенциал действия.

Аритмии, вызванные дигиталисной интоксикацией, «пируэтные» нарушения ритма, и редкие случаи желудочковой тахикардии, отвечающей на блокаторы кальциевых каналов, вероятнее всего обусловлены триггерной активностью.

Прежде чем приступить к обсуждению вопроса о том, как «работают» антиаритмические препараты, будет полезно произвести обзор важнейших клинических характеристик основных сердечных тахиаритмий.

Автоматические суправентрикулярные тахиаритмии

Автоматические суправентрикулярные аритмии наблюдаются почти исключительно в острых ситуациях, к которым относятся ишемия миокарда, обострение хронического легочного заболевания, острая алкогольная интоксикация и выраженный электролитный дисбаланс. Любое из этих нарушений способно продуцировать автоматические фокусы в предсердном миокарде.
Клинически, частота сердечных сокращений при автоматической предсердной тахикардии, как правило, меньше 200 уд/мин.

Как и при всех автоматических ритмах, начало и окончание в основном относительно постепенные, то есть в течение нескольких циклов наблюдается «разогрев» (или «охлаждение»), когда сердечный ритм учащается (или урежается).

Каждому комплексу QRS предшествует обособленный зубец Р, форма которого обычно отличается от таковой при нормальном синусовом зубце Р и зависит от локализации автоматического фокуса в предсердии. Соответственно, интервал PR нередко короче, чем на синусовом ритме, так как эктопический фокус может находиться относительно близко к АВ-узлу.

Поскольку автоматические предсердные тахикардии возникают и локализуются в предсердном миокарде (и поэтому аритмия сама по себе не зависима от АВ-узла), то появление АВ-блокады не оказывает воздействия на предсердную аритмию.

Мультифокальная предсердная тахикардия (МФПТ) — наиболее частая форма автоматической предсердной тахикардии. Она характеризуется множественной (не менее трех форм) морфологией зубцов Р и нерегулярными интервалами PR.

Полагают, что мультифокальная предсердная тахикардия — это результат наличия в миокарде нескольких автоматических фокусов, работающих с различными частотами.

Аритмия в большинстве случаев связана с обострением хронического легочного заболевания, особенно у пациентов, получающих теофиллин.

Фармакологическая терапия автоматической предсердной тахикардии, как правило, не очень эффективна, хотя препараты, воздействующие на АВ-узел, иногда способны замедлять желудочковый ритм вследствие развития АВ-блокады II степени. Стратегия лечения автоматических предсердных аритмий заключается в активной терапии основного заболевания.

– Также рекомендуем “Реципрокные суправентрикулярные тахиаритмии. АВ-узловая реципрокная тахикардия”

Оглавление темы “Проводящая система сердца”:
1. Электрофизиологическая система сердца. Сердечный потенциал действия
2. Деполяризация миокарда. Реполяризация миокарда
3. Фаза покоя миокарда. Местные различия иннервации сердца
4. Потенциал действия миокарда на ЭКГ. Механизмы сердечных тахиаритмий – автоматизм
5. Риентри. Механизмы формирования риентри
6. Каналопатии и триггерная активность. Автоматические суправентрикулярные тахиаритмии
7. Реципрокные суправентрикулярные тахиаритмии. АВ-узловая реципрокная тахикардия
8. Внутрипредсердный риентри. Трепетание и фибрилляция предсердий
9. Желудочковые тахиаритмии. Реципрокные желудочковые тахиаритмии
10. Паузозависимые триггерные аритмии. Экстренное лечение паузозависимой триггерной активности

Источник: //meduniver.com/Medical/cardiologia/519.html

Аритмия, вызванная автоматизмом и триггерной активностью

Триггерная активность при аритмиях это

выживших волокон Пуркинье [53]. Потенциалы действия и рефрактерный период в волокнах Пуркинье на разных участках существенно различаются по длительности.

Потенциалы действия зарегистрированы в выживших при инфаркте субэндокардиальных волокнах Пуркинье на границе между зоной инфаркта и нормальной тканью (l)f а также в субэндокардиальных волокнах Пуркинье с более продолжительной фазой реполяризации (2 и 3) [S3], а—преждевременный импульс (ПИ) возникает в точке 1 на границе зоны инфаркта и проходит внутри этой зоны (как показано изогнутыми стрелками), где потенциалы действия более продолжительные; при инфракте потенциал действия в точке 3 длительнее, чем в точке 2. Следовательно, преждевременный импульс может возбудить клетки в точке 2, но проведение заблокируется в точке 3. б — дальнейшее развитие событий: ПИ, пройдя через точку 2, активизирует клетки в точке 3 как циркулирующий импульс (ЦП), а затем возвращается к исходной точке (I), которую он также возбуждает как циркулирующий импульс [16].

Преждевременные импульсы, безусловно ответственные за циркуляцию описанных выше типов, могут возникать несколькими путями. Например, они могут появиться спонтанно в синусовом узле или в эктопическом водителе ритма; их можно также вызвать электрической стимуляцией сердца.

Медленное проведение и циркуляция, обусловленные анизотропностью структуры сердечной мышцы

Сердечная мышца анизотропна, т. е. ее анатомические и биофизические характеристики меняются в зависимости от направления, в котором они определяются относительно сердечного синцития [88]. Такая анизотропность, влияющая на проведение сердечного импульса, может иногда стать причиной циркуляции [89, 90].

Скорость проведения импульсов в направлении, перпендикулярном длинной оси предсердных или желудочковых волокон, значительно меньше, чем в направлении, параллельном этой оси. Очень медленное проведение наблюдается даже при нормальных величинах потенциала покоя и нарастания потенциала действия.

Медленное проведение обусловлено эффективным осевым сопротивлением (сопротивление току в направлении распространения возбуждения), которое гораздо выше в направлении, перпендикулярном проводящему волокну, чем в параллельном ему направлении [88—90].

Более высокое осевое сопротивление частично связано с меньшим количеством и меньшей длиной вставочных дисков, соединяющих боковые поверхности миокардиальных волокон, по сравнению с таковыми, соединяющими торцевые поверхности.

Медленное проведение является одним из компонентов, необходимых для возникновения циркуляции, и может быть одним из факторов, способствующих появлению циркуляции в нормальном миокарде предсердий или желудочков.

Доминирование синусового узла над латентными водителями ритма

Клетки многих областей сердца в норме способны спонтанно генерировать импульсы. Эти области включают синусовый узел, специализированные волокна предсердий, коронарный синус, АВ-соединение и клапаны, а также специализированную проводящую систему желудочков.

Однако при заболевании сердца возникновение импульса может наблюдаться практически везде, даже в рабочем миокарде предсердий и желудочков.

Клетка (или небольшая группа клеток) становится водителем ритма сердца в том случае, если она первой деполяризуется до порогового уровня и вызывает появление импульса, который обязательно проводится по всему сердцу и возбуждает другие потенциальные водители ритма, прежде чем они смогут спонтанно деполяризоваться до порогового уровня. Место инициации такого импульса получило название доминирующего водителя ритма. Другие области, способные стать водителем ритма, но стимулируемые доминирующим водителем ритма, называются подчиненными, или латентными, водителями ритма.

Рис. 3.18. Основные механизмы, обусловливающие изменения частоты разрядов пейсмекерных волокон.

//www.youtube.com/watch?v=Ri_fhBhj_UE

Верхняя диаграмма: снижение частоты, вызванное уменьшением наклона диастолической, или пейсмекерной, деполяризации (от а и б) и соответствующее увеличение времени, необходимого для изменения мембранного потенциала до порогового уровня (ПУ).

Нижняя диаграмма: снижение частоты, связанное со сдвигом порога потенциала от ПУ-1 до ПУ-2 и соответствующее увеличение продолжительности цикла (от б до в); показано также дальнейшее снижение частоты вследствие повышения максимального уровня диастолического потенциала (сравните а—в с г—д) [3].

Собственная частота, с которой клетка-пейсмекер генерирует импульсы, определяется взаимодействием трех факторов: 1) уровнем максимального диастолического потенциала; 2) уровнем порога потенциала; 3) степенью наклона в фазу 4 деполяризации.

Изменение любого из этих факторов влияет на время, затрачиваемое в фазу 4 на изменение мембранного потенциала от максимального диастолического уровня до порогового уровня потенциала (рис. 3.18); следовательно, оно влияет и на частоту возникновения импульса.

Например, если максимальный диастолический потенциал возрастает (становится более отрицательным), спонтанная деполяризация до порогового потенциала осуществляется дольше и частота возникновения импульса снижается (см. рис. 3.18).

И наоборот, с уменьшением максимального диастолического потенциала частота инициации импульса повышается. Аналогично этому, изменения порогового уровня потенциала или степени наклона во время фазы 4 деполяризации влияют на частоту возникновения импульсов.

В здоровом сердце наиболее быстрая деполяризация до порога отмечается в клетках синусового узла; следовательно, собственный ритм синусового узла выше, чем в других клетках. Поэтому синусовый узел обычно является доминирующим водителем ритма.

Если активность синусового узла внезапно прекращается, латентный водитель ритма не сразу начинает генерировать импульсы: обычно они появляются лишь после продолжительного периода молчания.

Частота инициации импульсов латентным водителем ритма вначале весьма невелика, но постепенно она повышается до определенного стабильного уровня, который, однако, ниже исходного уровня в синусовом узле [91]. Период молчания, следующий за прекращением синусового ритма, отражает утомление от ингибирующего влияния, оказываемого доминирующим водителем ритма на латентный водитель ритма.

В здоровом сердце подобное торможение обычно обеспечивает синусовому узлу функционирование в качестве единственного водителя ритма; оно названо подавлением усиленной стимуляцией (overdrive suppression).

Такое подавление обусловлено более частой стимуляцией клетки-пейсмекера по сравнению с ее собственным спонтанным ритмом и опосредовано повышенной

активностью Na—К-насоса. Так как ионы натрия входят в клетку во время каждого потенциала действия, с повышением частоты стимуляции увеличивается количество натрия, входящего в клетку за данное время.

Частота активности натриевого насоса в значительной мере определяется внутриклеточной концентрацией натрия, так что при высокой частоте стимуляции активность насоса возрастает [92].

Как уже отмечалось, Na —К-насос обычно больше работает на выведение ионов Na+ из клетки, чем на введение в

нее ионов К+, эффективно генерируя таким образом суммарный выходящий (гиперполяризующий) ток Na+. Когда частота стимуляции латентных клеток-пейсмекеров выше их собственного ритма, проходящий благодаря насосу гиперполяризующий ток дополнительно подавляет спонтанное возникновение импульсов в этих клетках.

После прекращения активности под влиянием доминирующего водителя ритма такое угнетение латентных клеток-пейсмекеров ответственно за период молчания, продолжающийся до тех пор, пока концентрация Nа+ внутри клетки, а значит, и в токе, проходящем благодаря насосу, не снизится настолько, чтобы латентные клеткипейсмекеры смогли деполяризоваться до порогового уровня, обеспечив тем самым возникновение следующего импульса. Представляется вполне вероятным, что доминирующий водитель ритма контролирует другие потенциальные пейсмекеры с помощью механизма подав ления усиленной стимуляцией независимо от влияния нормального автоматизма или триггерной активности на пейсмекерность других клеток, ведь амплитуда постдеполяризации, при которой возникают триггерные импульсы, также должна снижаться с увеличением тока, проходящего благодаря насосу. Однако влияние доминирующего синусового водителя ритма на нормальный и аномальный (при низком мембранном потенциале) автоматизм может существенно различаться. Аномальный автоматизм (в отличие от нормального) не может подавляться усиленной стимуляцией [93]. Поэтому возникновение импульсов в латентных водителях ритма с аномальным автоматизмом может наблюдаться сразу же после внезапного прекращения активности синусового узла.

Механизмы смещения доминирующего водителя ритма

Смещение места возникновения импульсов (водителя ритма) за пределы синусового узла может быть обусловлено либо неспособностью импульсов к активизации сердца, либо усилением их инициации в латентном водителе ритма.

Генерирование импульсов в синусовом узле может быть замедленным или даже подавленным в результате изменения активности вегетативной нервной системы [94] либо вследствие поражения синусового узла [95].

Снижение симпатической активности или повышение парасимпатической (вагусной) активности угнетает автоматизм синусового узла; заболевание синусового узла может привести к дегенерации его клеток. Возможен и другой вариант: проведение возбуждения из синусового узла в предсердия может быть ухудшено в какой-то части пути.

При любом из указанных состояний может иметь место ускользание латентного водителя ритма. Устранение сверхстимуляции в результате ослабления (или исчезновения) синусового ритма позволяет диастолической деполяризации латентного водителя ритма достичь порогового уровня и вызвать появление импульсов.

Такой ускользающий ритм в норме наблюдается в АВ-соединении (АВ-узел или пучок Гиса), так как собственный ритм клеток этой области выше, чем в других эктопических зонах.

Однако иногда патологический процесс, подавляющий инициацию импульсов в синусовом узле, угнетает ее и в АВ-соединении [95]; тогда место возникновения эктопических импульсов обычно находится на каком-либо другом участке проводящей системы предсердий или желудочков. Механизмом спонтанной диастолической деполяризации, предшествующей эктопическому ритму, может служить либо нормальный пейсмекерный ток, возникающий при высоком мембранном потенциале в нормальных волокнах Пуркинье, либо пейсмекерный ток, наблюдаемый при более низком мембранном потенциале в АВклапанах или АВ-узле.

Многие факторы способны повысить активность латентного водителя ритма и вызвать смещение места инициации возбуждения в эктопическую зону, даже если синусовый узел функционирует нормально. Например, норадреналин, высвобождаемый симпатическими нервными окончаниями, ускоряет спонтанную диастолическую деполяризацию большинства эктопических клеток-пейсмекеров, позволяя мембранному

Источник: //studfile.net/preview/4333815/page:22/

Триггерная активность

Триггерная активность при аритмиях это

Аномальная автоматическая активность

Спонтанное генерирование импульсов возможно в тех волокнах, где максимальный диастолический потенциал снижен в результате какого-либо воздействия. Аномальный автоматизм при низком уровне диастолического потенциала был продемонстрирован как в волокнах Пуркинье, так и в рабочем миокарде [26—28].

Подобная активность наиболее часто наблюдается в 'волокнах Пуркинье, в которых уровень максимального диастолического потенциала искусственно снижают до —60 или —50 мВ, а не до —90 или —95 мВ (см. рис. 7.1, Б).

Вероятной причиной автоматизма при уровне мембранного потенциала около —50 мВ является деактивация К+-тока, обозначаемого Ixi [29]. Из-за низкого уровня мембранного потенциала нарастание потенциала действия при аномальном автоматизме определяется медленным входящим током [16].

Сниженный диастолический потенциал, при котором возникает аномальный автоматизм, может обусловить возникновение блока входа в автоматический фокус и, следовательно, развитие парасистолического ритма [30].

В отличие от нормального автоматизма аномальный автоматизм может не угнетаться при усиленной стимуляции [31]. Поэтому аномальный автоматический ритм более легко захватывает желудочки при кратковременном замедлении наджелудочкового ритма.

Аномальный автоматизм бывает трудно отличить от триггерной активности, вызванной ранней постдеполяризацией, а также от триггерной активности, возникающей вследствие задержанной постдеполяризации в частично деполяризованных волокнах.

В ранних исследованиях эндокардиальных препаратов после 24-часовой ишемии ритмическая активность при сниженном уровне диастолического потенциала рассматривается как результат аномального автоматизма [15, 32, 33].

Однако после тщательного анализа возникновения и прекращения таких ритмов оказалось, что большинство из них является следствием триггерной активности, вызванной задержанной постдеполяризацией в частично деполяризованных ишемических волокнах Пуркинье [34].

Триггерная активность является пейсмекерной активностью, вызванной постдеполяризацией. Постдеполяризация — это вторая, подпороговая деполяризация, развивающаяся либо во время реполяризации (ранняя постдеполяризация), либо после ее завершения (задержанная постдеполяризация) [35].

Ранняя постдеполяризация. Она возникает в том случае, когда волокно не реполяризуется полностью после нарастания потен

Рис. 7.2. Триггерная активность вследствие ранней постдеполяризации в волокне Пуркинье у собаки под действием антоплеврина-А в концентрации 100 мкг/л.

Препарат увеличивает длительность потенциала действия и вызывает нарастание потенциала при ранней постдеполяризации.

После продолжительного диастолического периода (на фрагменте А) длительность потенциала действия существенно увеличивается и наблюдается всплеск ритмической активности при низком уровне мембранного потенциала.

Потенциалы действия, вызванные ранней постдеполяризацией, обусловливают возникновение сложного ритма по типу бигеминии и тригеминии (фрагмент Б).

На фрагменте В препарат стимулировался с короткими межимпульсными интервалами, что привело к сокращению длительности потенциала действия и исчезновению ранней постдеполяризации. Это показывает зависимость ранней постдеполяризации от брадикардии. S — моменты нанесения стимулов; Т — шкала времени с 1-секундными интервалами.

циала действия. Так как мембранный потенциал находится в диапазоне промежуточных значений, возможно возникновение осцилляторной деполяризации (рис. 7.2). Если только ранняя постдеполяризация возникнет, она сможет достигнуть порогового уровня и инициировать повторный ответ.

Иногда за ответом следует полная реполяризация, в других же случаях аномальный ответ сопровождается повторной деполяризацией при пониженном уровне мембранного потенциала. Ранняя постдеполяризация может возникнуть, если проводимость К+ снижена относительно проводимости входящего тока [15].

Ранняя постдеполяризация, как было показано, может быть вызвана при различных экспериментальных вмешательствах [16], включая быстрое и значительное понижение [К4'] о [36], воздействие катехоламинами в высокой концентрации [37] и введение ряда препаратов.

Экспериментальные препараты, такие как аконитин [38, 39] и вератридин [40], вызывают появление ранней постдеполяризации, вероятно, посредством усиления стабильного состояния проводимости Nа+ во время фазы плато потенциала действия. Как показано на рис. 7.

2, еще один экспериментальный препарат, антоплеврин-А (АП-А, полипептид, выделенный из актиний), также способен увеличить длительность потенциала действия и индуцировать раннюю постдеполяризацию.

АП-А, обладая рядом уникальных свойств как кардиотонический препарат, оказывает селективное положительное инотропное действие на сердце in vivo, которое многократно превышает аналогичный эффект дигиталиса [41, 42].

Эксперименты по фиксации потенциала позволяют предположить, что АП-А обусловливает задержку инактивации быстрого Nа+-тока [43]. Цезий—еще один экспериментальный препарат, увеличивающий длительность потенциала действия и вызывающий раннюю постдеполяризацию [44]. Правда, способность цезия увеличивать входящий ток не удалось показать, однако возможно, что и. нормального неинактивированного тока На4' вполне достаточно, чтобы вызвать постдеполяризацию при наличии достаточной задержки реполяризации и блокирования выходящих токов [44].

Другие препараты, способные значительно увеличивать время реполяризации, к которым относится используемый в клинике бета-блокатор соталол [45], а также антиаритмики N-ацетилпрокаинамид [46] и хинидин [47], также вызывают раннюю постдеполяризацию и триггерную активность. Как показано на рис. 7.

2, увеличение длительности потенциала действия и ранняя постдеполяризация, вызываемые АП-А, характеризуются своей зависимостью от брадикардии, т. е. они более выражены при продолжительных циклах (см. рис. 7.2, А) и явно угнетаются или даже исчезают при коротких циклах (см. рис. 7.2, В).

Тот же феномен наблюдается при воздействии цезием [44] и хинидином [47]; он способен обеспечить развитие аритмии, зависимой от брадикардии [44, 48—50].

Задержанная постдеполяризация. Она возникает после восстановления максимального диастолического потенциала во время фазы 3 реполяризации до определенной величины, порой ниже нормальной.

Триггерная активность возникает в том случае, когда задержанная постдеполяризация достигает порогового потенциала, и прекращается вследствие подпороговой постдеполяризации (рис. 7.3). Амплитуда и скорость нарастания задержанной постдеполяризации обычно зависят от длительности цикла и количества предшествующих потенциалов действия (см. рис. 7.

3, А) [34, 51—56]. Преждевременная стимуляция также способна увеличить амплитуду задержанной постдеполяризации [34, 55]. За преждевременным импульсом, вызванным в определенный момент времени, может последовать задержанная деполяризация, достигающая порога и инициирующая триггерную активность (см. рис. 7.3, Б).

Осцилляторный ток, ответственный за задержанную постдеполяризацию, в норме может присутствовать в клетках Пуркинье и способен возрастать в результате воздействий, повышающих [Са2+]i

[57]. Модель, предложенная для описания ионного механизма, ответственного за задержку постдеполяризации, предполагает существование в миокардиальных препаратах с признаками задержанной постдеполяризации общего для всех них феномена — повышения [Са2+]i. Это явление бывает либо непосредственным

Рис. 7.3. Триггерная активность, возникающая вследствие задержки постдеполяризации в эндокардиальных препаратах, полученных в зоне 24-часового инфаркта у собаки.

На фрагментах А и Б трансмембранная регистрация в клетках Пуркинье ишемической зоны в 2 различных препаратах. А — препарат стимулировался с межимпульсным интервалом 2000, 1200 и 1000 мс соответственно.

Сокращение длительности периода стимуляции повышает амплитуду постдеполяризации, которая на нижней записи достигает порогового уровня и инициирует триггерную активность. Триггерный ритм прекращается при подпороговой задержке деполяризации. Б — влияние преждевременной стимуляции на амплитуду задержанной постдеполяризации.

Препарат стимулировался с основным межимпульсным интервалом 2500 мс. Интервал сцепления экстрастимулов соответственно сократился с 1500 до 1200—1000 мс. Это повышает амплитуду постдеполяризации, которая после короткого интервала сцепления достигает порогового уровня, инициируя триггерный ритм.

Этот ритм прекращается после подпороговой постдеполяризации. S — моменты нанесения стимулов; Т — шкала времени с 1-секундными интервалами (34).

и, следовательно, увеличивающим движущую силу для ионов кальция, либо обусловленным возросшим поступлением кальция вследствие повышения кальциевой проводимости под действием катехоламинов [59].

Непрямое повышение [Са2+]i наблюдается при ингибировании Na-K-АТФазы под действием дигиталиса, а также растворов, не содержащих калия [61] и натрия [62, 63].

Когда величина [Ca2+]i достаточно велика, последующие потенциалы действия инициируют колебательное движение ионов кальция внутри клетки, что в свою очередь вызывает осцилляторные изменения мембранной проводимости, обеспечивающие появление всплесков входящего тока [64—66].

Кроме того, было показано, что задержанная постдеполяризация и триггерная активность возникают в субэндокардиальных ишемизированных волокнах Пуркинье, выживших через 24 ч после экспериментального инфаркта сердца собаки [34].

Гипоксия, сопровождающая окклюзию коронарной артерии, угнетает Na-K-АТФазу, приводя к снижению активности натриевого насоса, а следовательно, к уменьшению [К+]i и увеличению [Na+]i [67, 68].

Увеличение [Na+]i снижает градиент для Na+, что в свою очередь уменьшает выведение кальция при Na-Ca-обмене [62] и может способствовать высвобождению Са из митохондрий, в результате чего повышается [Ca2+]i;.

Кальциевые антагонисты способны угнетать триггерную активность либо посредством прямого подавления задержанной постдеполяризации, либо путем блокирования выхода в местах развития триггерной активности [34].

Наблюдаемую в клинических условиях аритмию сердца пока нельзя с уверенностью связать с задержанной постдеполяризацией; однако некоторые случаи ускоренного АВ-узлового и идиовентрикулярного ритмов, как и ряд предсердных и желудочковых нарушений ритма, вызванных интоксикацией сердечными гликозидами, можно объяснить задержкой постдеполяризации [70]. Спонтанные желудочковые ритмы при 24-часовом инфаркте миокарда собаки могут быть обусловлены задержанной постдеполяризацией и триггерной активностью [77]. In vivo такие ритмы подавляются верапамилом после бета-адренергической блокады, что приводит к полной остановке сердца. После остановки сердца желудочковые ритмы реинициируются (т. е. запускаются) только одним (иногда более) автоматическим или стимулированным возбуждением желудочков. Как и ритмы, наблюдаемые in vitro, триггерные ритмы in vivo имеют очаговое происхождение в волокнах Пуркинье, выживших после инфаркта [71].

Источник: //studopedia.su/18_73086_triggernaya-aktivnost.html

КрепкоеЗдоровье
Добавить комментарий